

Abstracts

Heat Loss of Circular Electric Waves in Helix Waveguides

J.A. Morrison. "Heat Loss of Circular Electric Waves in Helix Waveguides." 1958 *Transactions on Microwave Theory and Techniques* 6.2 (Apr. 1958 [T-MTT]): 173-177.

This paper presents a theoretical calculation of the eddy current losses of circular electric waves in a closely-wound helix waveguide. The wire diameter is assumed large compared to the skin depth, but small compared to the guide diameter and the operating wavelength, so that the fields near the wire are quasistatic and may be determined by conformal mapping. When the wires are in contact, the waveguide wall is effectively a metal surface with grooves of semicircular cross section, the current flow being parallel to the direction of the grooves. The power loss for this case is computed to be about 8.5 per cent higher than in a waveguide with smooth metal walls. When the wires are not in contact, the wall is treated as a grating of parallel, round wires. The increase in power loss over a smooth surface is approximately 22.5 per cent when the wires are separated by a distance equal to their diameter.

[Return to main document.](#)